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Abstract. The methodology (based on the so-called Dynamic Virtual Distortion Method) of 
redesign of structures exposed to impact loading is presented in the work. Minimization of 
material volume and accelerations of structural response can be chosen as the objective 
functions for optimal design of structures adaptating to impact loads. The cross-sections of 
structural members as well as stress levels triggering plastic-like behavior and initial 
prestressing can be the design parameters. A general formulation of this problem, as well as 
particular cases, are discussed. 
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1 INTRODUCTION 
Motivation for the undertaken research is to respond to requirements for high impact 

energy absorption e.g. in the structures exposed to the risk of extreme blast, light, thin wall 
tanks with high impact protection, vehicles with high crashworthiness, protective barriers, etc. 
Typically, the suggested solutions focus on the design of passive energy absorbing systems. 
These systems are frequently based on the aluminum and/or steel honeycomb packages 
characterized by a high ratio of specific energy absorption. However high is the energy 
absorption capacity of such elements, they still remain highly redundant structural members, 
which do not carry any load in the actual operation of a given structure. In addition, passive 
energy absorbers are designed to work effectively in pre-defined impact scenarios. For 
example, the frontal honeycomb cushions are very effective during a symmetric axial crash of 
colliding cars, but are completely useless in other types of crash loading. Consequently, 
distinct and sometimes completely independent systems must be developed for specific 
collision scenarios. 

In contrast to the standard passive systems, the proposed approach focuses on active 
adaptation of energy absorbing structures (equipped with a sensor system detecting impact in 
advance and controllable semi-active dissipaters, so called structural fuses) with a high ability 
of adaptation to extreme overloading. The concept formulation and first numerical analysis 
are based on the previously published paper [12]. Various formulations of crashworthiness-
based structural design problem are presented in papers [1]-[9], while the adaptive 
crashworthiness concept has been first proposed in [10]-[11]. The optimal design 
methodology proposed below combines sensitivity analysis with the redesign process, 
allowing optimal redistribution of material as well as stress limit control in structural fuses. It 
is assumed that this “smart” devices are able to release structural connections in a controlled 
way, triggering plastic-like distortions mimicking elasto-plastic behaviour shown in Fig.2. 

The objective of this presentation is to propose numerical tools for efficient redemodelling 
of structures under impact loads.   

Taking into account the following definitions: 
uE  – maximal expected impact energy 
uσ  – yield stress level for ideal elasto-plastic material used to built the structure 
uβ  – maximal allowed plastic-like distortion to be generated in structural fuses.  

the following optimization problem can be considered. 
'

i

min V = min i i iA lµ∑  (1.1)

subject to constraints: 

( )0
i

utβ β≤  
(1.2)

( ) * u
iσ σt σ≤ ≤   

( ) ( )0
i 0it tβ σ ≥   

where  denotes the length of the member i and stresses il ( )i tσ  depend on the maximal 
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expected impact load I(m,v) and the control parameters: iµ , , *
iσ

0'
iβ , what will be discussed in 

the next section. The constraint (1.2)3 describes the condition of dissipative character of 
plastic-like distortions generation 

2 VDM BASED DYNAMIC REMODELING OF ADAPTIVE STRUCTURE 
In this chapter we will formulate the VDM based description of the dynamic response of 

elasto-plastic truss structure. Applying discretized time description, the evolution of strains 
and stresses (with respect to initial cross-sections) can be expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )0 0
i

L
i ij j ik

t j t k
t t D t D t

τ τ
kε ε τ ε τ τ

≤ ≤

= + − ⋅ + − ⋅∑∑ ∑∑ β τ

0 0

 (2.1)

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

' 0 0

' 0 0
i

i i i i i

L
i i ij j i ik k i

t j t k

t E t t t

t E t D t t D t t
τ τ

σ ε ε β

σ ε τ ε τ ε τ β τ β
≤ ≤

= − −

⎡ ⎤
= + − ⋅ − + − ⋅ −⎢ ⎥

⎣ ⎦
∑∑ ∑∑

 

(2.2)

where so called dynamic influence matrices ( )ijD t τ−  describe the strain evolution caused in 
the truss element member i and in time instance t, due to unit virtual distortion impulse 
generated in member j in the time instant τ . The vector ( )L

i tε denotes the strain evolution due 
to external loads applied to the elastic structure with initial material distribution (unmodified 
cross-sections of members),  denotes virtual distortions responsible for modification of 
design variables and  describes plastic-like distortions. Note that matrix D stores 
information about the properties of the entire structure (including boundary conditions) and 
describes dynamic (not static) structural response to locally generated impulse of virtual 
distortion. Note also that it was assumed here the influence of local modifications of design 
variables on the stiffness matrix only. The full analysis taking into account the influence of 
virtual distrotions on both, the stiffness as well as the mass matrices is more complicated 
and will be discussed in separate section. From now on, we assume that small Latin index j 
runs through all modified members, and small Latin index k runs through all palstified 
elements. 

( )0
i tε

( )0
i tβ

( )0
i tε

In order to take into account elasto-plastic structural behaviour, let us use the bilinear 
constitutive model hardening (Fig. 1), given by the equation (2.3) 

( ) ( )( )* *
i i i i iσ σ γ E ε εt t− = − i  (2.3)

where *
iσ  denotes plastic yield stress, iγ  denotes hardening parameter and  denotes 

Young’s modulus. 
iE
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Fig. 1. Piece-wise linear constitutive relation for the adaptive structural member 
 

Now, when we substitute stress (2.2) and strain (2.1) evolution in time to the formula (2.3) we 
obtain the following equations: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) (0 * 01 1 1
i

L D H
i i i i ij j i ik k

t j t k
t t D t D t

τ τ
)0β γ ε ε γ τ ε τ γ τ β τ

≤ ≤

= − − + − − ⋅ + − − ⋅∑∑ ∑∑  (2.4)

Taking advantage of two expressions for the internal forces applied to the so called 
distorted (2.5) (with modification of material distribution modeled through virtual distortions) 
and modified (2.6) (with redesigned cross-sections form A  to 'A , without imposing virtual 
distortions) structure: 

( ) ( ) ( ) ( )( )0 0
i i i i i iP t E A t t tε ε β= − −  (2.5)

( ) ( ) ( )( )' 0
i i i i iP t E A t tε β= −  (2.6)

A formula combining components ( )0
i tε  and ( )0

i tβ  can be derived, where these 
components are non zero only for distorted and or plastified elements. 

If we assume that forces and strains in both structures: distorted (2.5) and modified (2.6) 
are the same, the modifications simulated with virtual distortion can be combined with these 
distortions through the flowing formula: 

( ) ( ) ( ) ( )( )0 01i i i it tε µ ε β= − − t  (2.7)

where ( )i tε  describes strain in member i in time t, while '/i i iA Aµ =  denotes ratio of the new 
cross-section to the initial one. Parameter 0,1iµ ∈  specifies size of modification of cross-
sections in element i. If 1iµ =  that means that in element i the cross-section does not change, 
and if 0iµ =  that means that element i can be neglected in the analysis. 

The formula (2.7) can be rewritten in the following form (2.8): 

( ) ( ) ( )
( ) ( )

0 0

' 0
i i ii

i
i i i

t tA
A t t

ε ε β
µ

ε β
− −

= =
−

t

 

(2.8)
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Now let us substitute strain evolution in time (2.1) to formula (2.8) getting the following set 
of equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 01
i

L D H
i i ij j ik k

t j t k
t t D t D t

τ τ

ε µ ε τ ε τ τ β τ β
≤ ≤

= − + − ⋅ + − ⋅ −∑∑ ∑∑ 0 0
i t  (2.9)

Note that the equations (2.4) are not dependant on the virtual distortions responsible for 
modification of design variables in time t ( )0

i tε , but only on the distortions in previous time 
steps ( )ε τ  tτ <  because of the assumption (2.10). 

( )0 0ijD =  (2.10)

Therefore, the plastic-like distortions ( )0
i tβ  should be calculated first in each time step of the 

algorithm.  
Equations (2.4) and (2.9) need only computation of the right-hand side expressions, and we 
need not solve the coupled sets of equations. 
Formulas (2.4) and (2.9) allow us to compute the virtual distortions’ development in time, 
modeling both: assumed remodeling of material distribution as well as adapted plastic-like 
stress limits. 

If there is no plasticity in our problem, then plastic-like distortions 0
iβ  are equal to zero and 

the equation (2.9) takes the following form: 

( ) ( ) ( ) ( ) ( )0 01
i

L
i i ij

t j
t t D t

τ
jε µ ε τ ε τ

≤

= − + − ⋅∑∑  (2.11)

Analogously, if there is no remodeling, distortions 0
iε  are equal to zero (the parameter iµ  is 

equal to one) and equation (2.4), determining plastic like distortions development takes the 
following form: 

( ) ( ) ( )( ) ( ) ( ) (0 *1 1
i

L H
i i i i ik

t k
t t D t

τ
)0

kβ γ ε ε γ τ β τ
≤

= − − + − − ⋅∑∑  (2.12)

To prove that the VDM method gives the same solutions as commercial programs let us 
compare results for the simple truss structure shown below with the structural response 
determined with ANSYS 
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Fig. 1. Testing example truss structure. (Young modulus Ei=2.1e11 [Pa], cross-sections Ai=1e-4 [m], density 
ρi=7800 [kg/m3]) 

 
All elements have different yield stress limits *

iσ  as well as parameters responsible for 
modification of design variables iµ .  

*
1σ = 8e7 [Pa], *

2σ = 4e7 [Pa] *
3σ = 6e7 [Pa]  

2µ = 0,7 1µ = 0,5 3µ = 0,9 
In the lower node, concentrated mass 20 [kg] is added, together with the following initial 
condition (modeling with external object): 

0
xV = 3 [m/s], = 5 [m/s] 0

yV
On the graphs shown below the comparison of strain (fig. 4), stress (fig. 5) and plastic 
distortion (fig. 6) development for the first and the second element, respectively is 
demonstrated. 
 

 
Fig. 2. Strain evolution in time for elements: a) left element, b) central element 

 
Fig. 3. Stress evolution in time for elements: a) left element, b)central element 

 

 
Fig. 4. Plastic distortion evolution in time for elements: a) left element, b) central element 
 
Note, that only modification of the stiffness matrix (due to remodeling) has been taken into 

account in the above formulas. Analogous modification of the mass matrix has to be added in 
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order to describe the complex remodeling phenomena. However, it was decided to keep this 
presentation simpler without additional complication of formulas. 

3 VDM BASED REDESIGN OF MASS DISTRIBUTION 
Let us now focus on the problem of modeling of mass redistribution in the structure 

applying analogous methodology to the VDM approach described above. In this case, 
however, we are going to use virtual forces rather than virtual distortions to model modified 
inertial forces due to modification of mass distribution. Therefore, the influence matrix D will 
be defined differently in this case, determining structural response to unit impulse forces 
applied in structural nodes. Following this Virtual Force Method (VFM) approach let us apply 
the following description of evolution of displacements, velocities and accelerations: 

( ) ( ) ( ) ( )0L
i i im m

t m

u t u t D t p
τ

τ τ
≤

= + −∑∑  

( ) ( ) ( ) ( )0L
i i im m

t m

u t u t D t p
τ

τ τ
≤

= + −∑∑  (3.1)

( ) ( ) ( ) ( )0L
i i im m

t m

u t u t D t p
τ

τ τ
≤

= + −∑∑  

where the dynamic influence matrix ( )imD t τ−  describes the displacement evolution caused in 
the truss node i and in time instance t, due to unit virtual force generated in node m of the 
originally configured structure (assuming lumped mass matrix) in the time instant τ . The 
vector denotes the displacement evolution due to external loads applied also to the 
unmodified structure,  denotes virtual forces modeling modification of mass 
distribution. Note that  the matrix D stores information about the properties of the entire 
structure (including boundary conditions) and describes dynamic (not static) structural 
response to locally generated impulse of virtual force. From now on, we assume that small 
Latin index m runs through all modified nodes. 

( )L
iu t

( )0
ip t

The equation of motion for unmodified structure, with unchanged mass M distribution and 
virtual forces modeling mass redistribution takes the form (3.2). On the other hand, the 
equation of motion for the modified structure, with modified mass M’ distribution takes the 
form (3.3). 

( ) ( ) ( ) ( )0
i i iMu t Ku t p t F t+ − =  (3.2)

( ) ( ) ( )'
i iM u t Ku t F t+ =  (3.3)

Assuming that forces ( )F t  and displacements ( )iu t  in both structures: the modified one 
(3.3) and the modeled (3.2) are the same, the mass modifications and modeling them virtual 
forces can be combined through the flowing formula: 

( ) ( ) ( ) ( )' 0
i i iM M u t Mu t p t− = ∆ =  or ( )( ) ( )01 M

i i iMu t p tµ− =  (3.4)
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where accelerations of displacements ( )iu t  can be presented in the form (3.1), while 
' /i i iM Mµ =  denotes the ratio of the new mass to the initial one. Parameter max0,i Mµ ∈  

specifies the intensity of mass modification in node i. If 1iµ =  that means that the mass does 
not change in the node i, and if 0iµ =  that means that mass of the node i vanishes. The value 

maxM  denotes the maximal acceptable mass concentrated in one node.. 
Substituting (3.1)3 to (3.4) the following formula allowing determination of the virtual 

force evolution can be derived: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 0 1M M L
i i i i im

t m
p t M D p t M u t D t p

τ
mµ µ

<

τ τ⎡ ⎤
− − = − + −⎢ ⎥

⎣ ⎦
∑∑  (3.5)

To prove that the proposed method gives the same solutions as classical methods let us 
compare results for the truss structure shown below. 

 
Fig. 5. Testing example truss structure. (Young modulus Ei=2.1e11 [Pa], cross-sections Ai=1e-4 [m], density 

ρi=7800 [kg/m3]) 
 

All elements have the same material parameters, and in nodes 2 and 4 concentrated mass 100 
[kg] is added, in node 2 initial condition (modeling with external object): = -10 [m/s]. In 
node 2 

0
yV

3
Mµ  and 4

Mµ  is equalt 0.8 and in node 4 7
Mµ  and 8

Mµ  is equalt 0.4. 
On the graphs shown below the comparison of displacement, velocity and acceleration 

development for the node 2 in y direction, respectively is demonstrated. 
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Fig. 6. Displacement, velocity and acceleration in time, for modified (with changed mass) and modeled using 

VDM structure. 
 

4 CONCLUSION 

The methodology (based on the so-called Dynamic Virtual Distortion Method) of the 
design of structures exposed to impact loading is presented in the work. Minimization of 
material volume is chosen as the objective functions for optimal design of structures 
adaptating to impact loads. The cross-sections of structural members as well as stress levels 
triggering plastic-like behavior and initial prestressing can be the design parameters.  

The paper demonstrates the effectiveness of the proposed concept. The yield stress level 
adaptation to the applied load has significant influence on the intensity of impact energy 
dissipation. 
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